Biological Signals and Receptors2001; 10: 224-253
ABSTRACT: Parkinson’s disease is the second most common neurodegenerative disorder after Alzheimer’s disease affecting approximately 1% of the population older than 50 years. There is a worldwide increase in disease prevalence due to the increasing age of human populations. A definitive neuropathological diagnosis of Parkinson’s disease requires loss of dopaminergic neurons in the substantia nigra and related brain stem nuclei, and the presence of Lewy bodies in remaining nerve cells. The contribution of genetic factors to the pathogenesis of Parkinson’s disease is increasingly being recognized. A point mutation which is sufficient to cause a rare autosomal dominant form of the disorder has been recently identified in the alpha-synuclein gene on chromosome 4 in the much more common sporadic, or ‘idiopathic’ form of Parkinson’s disease, and a defect of complex I of the mitochondrial respiratory chain was confirmed at the biochemical level. Disease specificity of this defect has been demonstrated for the parkinsonian substantia nigra. These findings and the observation that the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), which causes a Parkinson-like syndrome in humans, acts via inhibition of complex I have triggered research interest in the mitochondrial genetics of Parkinson’s disease. Oxidative phosphorylation consists of five protein-lipid enzyme complexes located in the mitochondrial inner membrane that contain flavins (FMN, FAD), quinoid compounds (coenzyme Q10, CoQ10) and transition metal compounds (iron-sulfur clusters, hemes, protein-bound copper). These enzymes are designated complex I (NADH:ubiquinone oxidoreductase, EC 1.6. 5.3), complex II (succinate:ubiquinone oxidoreductase, EC 1.3.5.1), complex III (ubiquinol:ferrocytochrome c oxidoreductase, EC1.10.2.2), complex IV (ferrocytochrome c:oxygen oxidoreductase or cytochrome c oxidase, EC 1.9.3.1), and complex V (ATP synthase, EC 3.6.1.34). A defect in mitochondrial oxidative phosphorylation, in terms of a reduction in the activity of NADH CoQ reductase (complex I) has been reported in the striatum of patients with Parkinson’s disease. The reduction in the activity of complex I is found in the substantia nigra, but not in other areas of thebrain, such as globus pallidus or cerebral cortex. Therefore, the specificityof mitochondrial impairment may play a role in the degeneration of nigrostriataldopaminergic neurons. This view is supported by the fact that MPTP generating1-methyl-4-phenylpyridine (MPP(+)) destroys dopaminergic neurons in thesubstantia nigra. Although the serum levels of CoQ10 is normal in patients with Parkinson’s disease, CoQ10 is able to attenuate the MPTP-inducedloss of striatal dopaminergic neurons.
© SOTO-USA 2025 - All rights are reserved by SOTO-USA to the electronically printed material herein.
This SOT Literature Page and all its contents herein are published by SOTO-USA solely for the purpose of education. All rights reserved by SOTO-USA to accept, reject or modify any submission for publication. The opinions stated in the electronically printed material herein are those of the authors and do not necessarily represent the opinions of SOTO-USA or other individuals associated with SOTO-USA. SOTO-USA does not guarantee or make any representation that the printed material contained herein is valid, reliable or accurate. SOTO-USA does not assume any responsibility for injury arising from any use or misuse of the printed material herein. The printed material contained herein is assumed to be from reliable sources and there is no implication that the printed material herein present the only, or the best methodologies or procedures for the care or treatment of conditions discussed. It is incumbent upon the reader to verify the accuracy of any diagnosis and treatment information contained herein, and to make modifications as new information and/or research arises.
Vist the wisdom, skill, and humor of Dr. DeJarnette the developer of Sacro Occipital Technique.
Major Bertrand DeJarnette, DC, was a renowned inventor, engineer, osteopath, and chiropractor throughout his long and productive career.